Regulation of glucose transport in the NIH 3T3 L1 preadipocyte cell line by TCDD.

نویسندگان

  • H Olsen
  • E Enan
  • F Matsumura
چکیده

This study examined the changes in cellular glucose uptake induced by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) as measured by quantification of intracellular radioactivity in the NIH 3T3 L1 preadipocyte cell line after a 30-minute incubation with the non-metabolizable radioactive analogue of glucose, 3-O-methyl-D-[1-3H] glucose. Treatment of differentiated NIH 3T3 L1 cells with TCDD produced a time- and dose-dependent decrease in the cellular uptake of glucose. Treatment of cells for 3 hr with 10(-8) M TCDD significantly reduced glucose uptake to about 10% of control values (p </= 0.05). Furthermore, cytochalasin B, a specific inhibitor of facilitative glucose transporter proteins totally abolished the portion of glucose transport activity that is sensitive to TCDD. The role of the Ah receptor in TCDD-mediated reduction in glucose uptake was investigated. Pretreatment of 3T3 L1 cells with the Ah receptor blocker 4,7-phenanthroline antagonized the effect of TCDD on glucose uptake. Structure-activity relationship studies with TCDD and two polychlorinated biphenyl (PCB) congeners revealed a rank order for their potency in the inhibition of glucose transport as follows: TCDD <<3,3',4,4' tetrachlorobiphenyl <2,2',5,5' tetrachlorobiphenyl (TCB). Such a rank order correlates both with previously determined biological activity of TCDD and the more active 3,3',4,4'- and less active 2,2',5,5'-TCB and with affinity for binding to the Ah receptor. The thyroid hormone T4, like TCDD, reduced glucose uptake and blocked the action of TCDD to further reduce glucose uptake. Experimental evidence is consistent with a proposed mechanism for TCDD to reduce the titer of functional glucose transporter proteins through its interaction with the Ah receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPLICATION OF TWO-DIMENSIONAL ELECTROPHORESIS AND NIH 3T3 CELL TRANSFECTION ASSAY IN THE STUDY OF TUMOR-AS SOCIATED PROTEINS AND GENOMIC DNA TUMOROGENICITY IN MALIGNANT HUMAN ESOPHAGEAL SPECIMENS

Total protein and DNA extracted from histologically diagnosed normal nonmalignant and esophageal tumor tissues were used for analysis of polypeptides pattern by two-dimensional gel electrophoresis and DNA transforming activity in NIH 3T3 cell transfection assay, respectively. In comparison to normal tissues, eight polypeptides underwent down-regulation or disappeared, while seven polypeptid...

متن کامل

Ginsenoside Rg5: Rk1 Exerts an Anti-obesity Effect on 3T3-L1 Cell Line by the Downregulation of PPARγ and CEBPα

Background: Obesity, a global health problem and a chronic disease, is associated with increased risk of developing type 2 diabetes and coronary heart diseases. A wide variety of natural remedies have been explored for their obesity treatment potential. Objective: The anti-adipogenic effect of ginsenoside Rg5:Rk1 (Rg5:Rk1) on 3T3-L1 mature adipocytes was investigated. Materials and ...

متن کامل

The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo.

The differentiation of a preadipocyte into a mature adipocyte is a highly regulated process that requires a scripted program of transcriptional events leading to changes in gene expression. Several genes are associated with adipogenesis, including the CAAT/enhancer-binding protein (C/EBPs) and peroxisome proliferator-activated receptor (PPAR) families of transcription factors. In this study, we...

متن کامل

EPAS1 promotes adipose differentiation in 3T3-L1 cells.

Adipose differentiation is regulated by several transcription factors, such as the CAAT/enhancer-binding protein family and peroxisome proliferator activator (PPAR) gamma2. Several recent studies have shown that the basic helix-loop-helix-PAS superfamily is also involved in the regulation of adipose differentiation. In this study, we investigated the roles played by EPAS1 (endothelial PAS domai...

متن کامل

MicroRNA-125a-5p Mediates 3T3-L1 Preadipocyte Proliferation and Differentiation.

Excessive accumulation of adipose tissue is a main cause of obesity or overweight, which is significantly involved in increasing the risk of diseases. Recently, numerous studies have proved that microRNAs (miRNAs) play important roles in adipogenesis by negatively regulating gene expression at posttranscriptional levels. In this study, we showed that miR-125a-5p was expressed at lower levels in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 102  شماره 

صفحات  -

تاریخ انتشار 1994